Estimates for the nonlinear viscoelastic damped wave equation on compact Lie groups

نویسندگان

چکیده

Let $G$ be a compact Lie group. In this article, we investigate the Cauchy problem for nonlinear wave equation with viscoelastic damping on . More precisely, some $L^2$ -estimates solution to homogeneous damped utilizing group Fourier transform We also prove that there is no improvement of any decay rate norm $\|u(t,\,\cdot )\|_{L^2(G)}$ by further assuming $L^1(G)$ -regularity initial data. Finally, using noncommutative analysis groups, local in time existence result energy space $\mathcal {C}^1([0,\,T],\,H^1_{\mathcal {L}}(G)).$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear damped wave equation arising in viscoelastic fluid flows

We consider the nonlinear damped wave equation arising in unsteady Poiseuille flow of shear thinning Maxwell fluid. We show the global existence of the smooth solution to the corresponding nonlinear system. We also give some numerical examples. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Wave equation and multiplier estimates on ax + b groups

Let L be the distinguished Laplacian on certain semidirect products of R by R which are of ax+ b type. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form e √ ψ( √ L/λ) for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [−2, 2] if λ ≤ 1 and in [1, 2] if λ ≥ 1. As a corollary, we reprove a basic multipl...

متن کامل

Compact Lie Groups

The first half of the paper presents the basic definitions and results necessary for investigating Lie groups. The primary examples come from the matrix groups. The second half deals with representation theory of groups, particularly compact groups. The end result is the Peter-Weyl theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings

سال: 2023

ISSN: ['0890-1740']

DOI: https://doi.org/10.1017/prm.2023.38